Optimal algorithms for haplotype assembly from whole-genome sequence data
نویسندگان
چکیده
MOTIVATION Haplotype inference is an important step for many types of analyses of genetic variation in the human genome. Traditional approaches for obtaining haplotypes involve collecting genotype information from a population of individuals and then applying a haplotype inference algorithm. The development of high-throughput sequencing technologies allows for an alternative strategy to obtain haplotypes by combining sequence fragments. The problem of 'haplotype assembly' is the problem of assembling the two haplotypes for a chromosome given the collection of such fragments, or reads, and their locations in the haplotypes, which are pre-determined by mapping the reads to a reference genome. Errors in reads significantly increase the difficulty of the problem and it has been shown that the problem is NP-hard even for reads of length 2. Existing greedy and stochastic algorithms are not guaranteed to find the optimal solutions for the haplotype assembly problem. RESULTS In this article, we proposed a dynamic programming algorithm that is able to assemble the haplotypes optimally with time complexity O(m x 2(k) x n), where m is the number of reads, k is the length of the longest read and n is the total number of SNPs in the haplotypes. We also reduce the haplotype assembly problem into the maximum satisfiability problem that can often be solved optimally even when k is large. Taking advantage of the efficiency of our algorithm, we perform simulation experiments demonstrating that the assembly of haplotypes using reads of length typical of the current sequencing technologies is not practical. However, we demonstrate that the combination of this approach and the traditional haplotype phasing approaches allow us to practically construct haplotypes containing both common and rare variants.
منابع مشابه
Theory and Algorithms for the Haplotype Assembly Problem∗
Genome sequencing studies to date have generally sought to assemble consensus genomes by merging sequence contributions from multiple homologous copies of each chromosome. With growing interest in genetic variations, however, there is a need for methods to separate these distinct contributions and assess how individual homologous chromosome copies differ from one another. An approach to this pr...
متن کاملO-36: Genome Haplotyping and Detection of Meiotic Homologous Recombination Sites in Single Cells, A Generic Method for Preimplantation Genetic Diagnosis
Background: Haplotyping is invaluable not only to identify genetic variants underlying a disease or trait, but also to study evolution and population history as well as meiotic and mitotic recombination processes. Current genome-wide haplotyping methods rely on genomic DNA that is extracted from a large number of cells. Thus far random allele drop out and preferential amplification artifacts of...
متن کاملAn MCMC algorithm for haplotype assembly from whole-genome sequence data.
In comparison to genotypes, knowledge about haplotypes (the combination of alleles present on a single chromosome) is much more useful for whole-genome association studies and for making inferences about human evolutionary history. Haplotypes are typically inferred from population genotype data using computational methods. Whole-genome sequence data represent a promising resource for constructi...
متن کاملHaplotype Phasing By Multi-Assembly of Shared Haplotypes: Phase-Dependent Interactions Between Rare Variants
In this paper we propose algorithmic strategies, Lander-Waterman-like statistical estimates, and genome-wide software for haplotype phasing by multi-assembly of shared haplotypes. Specifically, we consider four types of results which together provide a comprehensive workflow of GWAS data sets: (1) statistics of multi-assembly of shared haplotypes (2) graph theoretic algorithms for haplotype ass...
متن کاملHaplotype assembly in polyploid genomes and identical by descent shared tracts
MOTIVATION Genome-wide haplotype reconstruction from sequence data, or haplotype assembly, is at the center of major challenges in molecular biology and life sciences. For complex eukaryotic organisms like humans, the genome is vast and the population samples are growing so rapidly that algorithms processing high-throughput sequencing data must scale favorably in terms of both accuracy and comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 26 شماره
صفحات -
تاریخ انتشار 2010